When Old Meets New: Emotion Recognition from Speech Signals

Author:

Araño Keith AprilORCID,Gloor Peter,Orsenigo Carlotta,Vercellis Carlo

Abstract

AbstractSpeech is one of the most natural communication channels for expressing human emotions. Therefore, speech emotion recognition (SER) has been an active area of research with an extensive range of applications that can be found in several domains, such as biomedical diagnostics in healthcare and human–machine interactions. Recent works in SER have been focused on end-to-end deep neural networks (DNNs). However, the scarcity of emotion-labeled speech datasets inhibits the full potential of training a deep network from scratch. In this paper, we propose new approaches for classifying emotions from speech by combining conventional mel-frequency cepstral coefficients (MFCCs) with image features extracted from spectrograms by a pretrained convolutional neural network (CNN). Unlike prior studies that employ end-to-end DNNs, our methods eliminate the resource-intensive network training process. By using the best prediction model obtained, we also build an SER application that predicts emotions in real time. Among the proposed methods, the hybrid feature set fed into a support vector machine (SVM) achieves an accuracy of 0.713 in a 6-class prediction problem evaluated on the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, which is higher than the previously published results. Interestingly, MFCCs taken as unique input into a long short-term memory (LSTM) network achieve a slightly higher accuracy of 0.735. Our results reveal that the proposed approaches lead to an improvement in prediction accuracy. The empirical findings also demonstrate the effectiveness of using a pretrained CNN as an automatic feature extractor for the task of emotion prediction. Moreover, the success of the MFCC-LSTM model is evidence that, despite being conventional features, MFCCs can still outperform more sophisticated deep-learning feature sets.

Funder

MIT-PHILIPS LIGHTING

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3