Sigma-Lognormal Modeling of Speech

Author:

Carmona-Duarte C.ORCID,Ferrer M. A.,Plamondon R.,Gómez-Rodellar A.,Gómez-Vilda P.

Abstract

AbstractHuman movement studies and analyses have been fundamental in many scientific domains, ranging from neuroscience to education, pattern recognition to robotics, health care to sports, and beyond. Previous speech motor models were proposed to understand how speech movement is produced and how the resulting speech varies when some parameters are changed. However, the inverse approach, in which the muscular response parameters and the subject’s age are derived from real continuous speech, is not possible with such models. Instead, in the handwriting field, the kinematic theory of rapid human movements and its associated Sigma-lognormal model have been applied successfully to obtain the muscular response parameters. This work presents a speech kinematics-based model that can be used to study, analyze, and reconstruct complex speech kinematics in a simplified manner. A method based on the kinematic theory of rapid human movements and its associated Sigma-lognormal model are applied to describe and to parameterize the asymptotic impulse response of the neuromuscular networks involved in speech as a response to a neuromotor command. The method used to carry out transformations from formants to a movement observation is also presented. Experiments carried out with the (English) VTR-TIMIT database and the (German) Saarbrucken Voice Database, including people of different ages, with and without laryngeal pathologies, corroborate the link between the extracted parameters and aging, on the one hand, and the proportion between the first and second formants required in applying the kinematic theory of rapid human movements, on the other. The results should drive innovative developments in the modeling and understanding of speech kinematics.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Interreg

Natural Sciences and Engineering Research Council of Canada

Ministerio de Ciencia, Innovación y Universidades

ministerio de educación y formación profesional

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Machine Learning Approach to Analyze the Effects of Alzheimer’s Disease on Handwriting Through Lognormal Features;Graphonomics in Human Body Movement. Bridging Research and Practice from Motor Control to Handwriting Analysis and Recognition;2023

2. Lognormality: An Open Window on Neuromotor Control;Graphonomics in Human Body Movement. Bridging Research and Practice from Motor Control to Handwriting Analysis and Recognition;2023

3. Lognormal Features for Early Diagnosis of Alzheimer’s Disease Through Handwriting Analysis;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3