Abstract
AbstractThe high incidence of stroke occurrence necessitates the understanding of its causes and possible ways for early prediction and prevention. In this respect, statistical methods offer the “big picture,” but they have a weak predictive ability at an individual level. This research proposes a new personalized modeling method based on computational spiking neural networks (SNN) for the identification of causal associations between clinical and environmental time series data that can be used to predict individual stroke events. The method is tested on 804 stroke patients. Given a clinical data set of patients who experienced a stroke in the past and the corresponding environmental time-series data for a selected time-window before the stroke event, the method identifies the clusters of individuals with a high risk for stroke under similar conditions. The methodology involves a pipeline of processes when creating a personalized model for an individual $$x$$
x
: (1) selecting a group of individuals $$Gx$$
Gx
with similar personal records to $$x$$
x
; (2) training a personalized SNN $$x$$
x
model of several days of environmental data related to the $$Gx$$
Gx
group to predict the risk of stroke for $$x$$
x
at least one day earlier; (3) model interpretability through 3D visualization; (4) discovery of personalized predictive markers. The results are twofold, first proposing a new computational methodology and second presenting new findings. It is found that certain environmental factors, such as SO2, PM10, CO, and PM2.5, increase the risk of stroke if an individual $$x$$
x
belongs to a certain cluster of people, characterized by a combination of family history of stroke and diabetes, overweight, vascular/heart disease, age, and other. For the used population data, the proposed method can predict accurately individual risk of stroke before the day of the stroke. The paper presents a new methodology for personalized machine learning methods to define subgroups of the population with a high risk of stroke and to predict early individual risk of the stroke event. This makes the proposed cognitive computation method useful to reduce morbidity and mortality in society. The method is broadly applicable for predicting individual risk of other diseases and mental health conditions.
Funder
Auckland University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献