Gradient-Based Competitive Learning: Theory

Author:

Cirrincione Giansalvo,Randazzo VincenzoORCID,Barbiero Pietro,Ciravegna Gabriele,Pasero Eros

Abstract

AbstractDeep learning has been recently used to extract the relevant features for representing input data also in the unsupervised setting. However, state-of-the-art techniques focus mostly on algorithmic efficiency and accuracy rather than mimicking the input manifold. On the contrary, competitive learning is a powerful tool for replicating the input distribution topology. It is cognitive/biologically inspired as it is founded on Hebbian learning, a neuropsychological theory claiming that neurons can increase their specialization by competing for the right to respond to/represent a subset of the input data. This paper introduces a novel perspective by combining these two techniques: unsupervised gradient-based and competitive learning. The theory is based on the intuition that neural networks can learn topological structures by working directly on the transpose of the input matrix. At this purpose, the vanilla competitive layer and its dual are presented. The former is representative of a standard competitive layer for deep clustering, while the latter is trained on the transposed matrix. The equivalence of the layers is extensively proven both theoretically and experimentally. The dual competitive layer has better properties. Unlike the vanilla layer, it directly outputs the prototypes of the data inputs, while still allowing learning by backpropagation. More importantly, this paper proves theoretically that the dual layer is better suited for handling high-dimensional data (e.g., for biological applications), because the estimation of the weights is driven by a constraining subspace which does not depend on the input dimensionality, but only on the dataset cardinality. This paper has introduced a novel approach for unsupervised gradient-based competitive learning. This approach is very promising both in the case of small datasets of high-dimensional data and for better exploiting the advantages of a deep architecture: the dual layer perfectly integrates with the deep layers. A theoretical justification is also given by using the analysis of the gradient flow for both vanilla and dual layers.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition

Reference67 articles.

1. MacQueen J, others. Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Oakland, CA, USA. 1967;281–97.

2. McLachlan GJ, Basford KE. Mixture models: inference and applications to clustering. M. Dekker New York. 1988.

3. Martinetz T, Schulten K, others. A “neural-gas” network learns topologies. Artif Neural Netw. 1991;397–402.

4. Bhatia SK, others. Adaptive K-means clustering. FLAIRS conference. 2004;695–9.

5. Ester M, Kriegel H-P, Sander J, Xu X, others. A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd. 1996;226–31.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3