Smart Data Driven Decision Trees Ensemble Methodology for Imbalanced Big Data

Author:

García-Gil DiegoORCID,García Salvador,Xiong Ning,Herrera Francisco

Abstract

AbstractDifferences in data size per class, also known as imbalanced data distribution, have become a common problem affecting data quality. Big Data scenarios pose a new challenge to traditional imbalanced classification algorithms, since they are not prepared to work with such amount of data. Split data strategies and lack of data in the minority class due to the use of MapReduce paradigm have posed new challenges for tackling the imbalance between classes in Big Data scenarios. Ensembles have been shown to be able to successfully address imbalanced data problems. Smart Data refers to data of enough quality to achieve high-performance models. The combination of ensembles and Smart Data, achieved through Big Data preprocessing, should be a great synergy. In this paper, we propose a novel Smart Data driven Decision Trees Ensemble methodology for addressing the imbalanced classification problem in Big Data domains, namely SD_DeTE methodology. This methodology is based on the learning of different decision trees using distributed quality data for the ensemble process. This quality data is achieved by fusing random discretization, principal components analysis, and clustering-based random oversampling for obtaining different Smart Data versions of the original data. Experiments carried out in 21 binary adapted datasets have shown that our methodology outperforms random forest.

Funder

Spanish National Research Project

Swedish Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3