1. Zhang S, Huang K, Zhang R, Hussain A. Learning from few samples with memory network. Cogn Comput. 2018;10(1):15–22. https://doi.org/10.1007/s12559-01-9507-z.
2. Perconti P, Plebe A. Deep learning and cognitive science. Cognition. 2020;203:104365. https://doi.org/10.1016/j.cognition.2020.104365. http://www.sciencedirect.com/science/article/pii/S0010027720301840
3. Yao Q, Wang M, Escalante HJ, Guyon I, Hu YQ, Li YF, Tu WW, Yang Q, Yu Y. Taking human out of learning applications: A survey on automated machine learning. arXiv preprint 2018. arXiv:1810.13306
4. Liang JZ, Meyerson E, Hodjat B, Fink D, Mutch K, Miikkulainen R. Evolutionary neural AutoML for deep learning. In A. Auger and T. Stützle, editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019, Prague, Czech Republic, July 13-17, 2019. ACM, 2019. pp. 401–409. https://doi.org/10.1145/3321707.3321721.
5. Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K. Hierarchical representations for efficient architecture search. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. https://openreview.net/forum?id=BJQRKzbA-