NILRNN: A Neocortex-Inspired Locally Recurrent Neural Network for Unsupervised Feature Learning in Sequential Data

Author:

Van-Horenbeke Franz A.ORCID,Peer Angelika

Abstract

AbstractUnsupervised feature learning refers to the problem of learning useful feature extraction functions from unlabeled data. Despite the great success of deep learning networks in this task in recent years, both for static and for sequential data, these systems can in general still not compete with the high performance of our brain at learning to extract useful representations from its sensory input. We propose the Neocortex-Inspired Locally Recurrent Neural Network: a new neural network for unsupervised feature learning in sequential data that brings ideas from the structure and function of the neocortex to the well-established fields of machine learning and neural networks. By mimicking connection patterns in the feedforward circuits of the neocortex, our system tries to generalize some of the ideas behind the success of convolutional neural networks to types of data other than images. To evaluate the performance of our system at extracting useful features, we have trained different classifiers using those and other learnt features as input and we have compared the obtained accuracies. Our system has shown to outperform other shallow feature learning systems in this task, both in terms of the accuracies achieved and in terms of how fast the classification task is learnt. The results obtained confirm our system as a state-of-the-art shallow feature learning system for sequential data, and suggest that extending it to or integrating it into deep architectures may lead to new successful networks that are competent at dealing with complex sequential tasks.

Funder

Euregio

Libera Università di Bolzano

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3