Snapture—a Novel Neural Architecture for Combined Static and Dynamic Hand Gesture Recognition

Author:

Ali HassanORCID,Jirak Doreen,Wermter Stefan

Abstract

AbstractAs robots are expected to get more involved in people’s everyday lives, frameworks that enable intuitive user interfaces are in demand. Hand gesture recognition systems provide a natural way of communication and, thus, are an integral part of seamless human-robot interaction (HRI). Recent years have witnessed an immense evolution of computational models powered by deep learning. However, state-of-the-art models fall short of expanding across different gesture domains, such as emblems and co-speech. In this paper, we propose a novel hybrid hand gesture recognition system. Our Snapture architecture enables learning both static and dynamic gestures: by capturing a so-called snapshot of the gesture performance at its peak, we integrate the hand pose and the dynamic movement. Moreover, we present a method for analyzing the motion profile of a gesture to uncover its dynamic characteristics, which allows regulating a static channel based on the amount of motion. Our evaluation demonstrates the superiority of our approach on two gesture benchmarks compared to a state-of-the-art CNNLSTM baseline. Our analysis on a gesture class basis unveils the potential of our Snapture architecture for performance improvements using RGB data. Thanks to its modular implementation, our framework allows the integration of other multimodal data, like facial expressions and head tracking, which are essential cues in HRI scenarios, into one architecture. Thus, our work contributes both to integrative gesture recognition research and machine learning applications for non-verbal communication with robots.

Funder

Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3