Modelling Human Word Learning and Recognition Using Visually Grounded Speech

Author:

Merkx DannyORCID,Scholten Sebastiaan,Frank Stefan L.,Ernestus Mirjam,Scharenborg Odette

Abstract

AbstractMany computational models of speech recognition assume that the set of target words is already given. This implies that these models learn to recognise speech in a biologically unrealistic manner, i.e. with prior lexical knowledge and explicit supervision. In contrast, visually grounded speech models learn to recognise speech without prior lexical knowledge by exploiting statistical dependencies between spoken and visual input. While it has previously been shown that visually grounded speech models learn to recognise the presence of words in the input, we explicitly investigate such a model as a model of human speech recognition. We investigate the time course of noun and verb recognition as simulated by the model using a gating paradigm to test whether its recognition is affected by well-known word competition effects in human speech processing. We furthermore investigate whether vector quantisation, a technique for discrete representation learning, aids the model in the discovery and recognition of words. Our experiments show that the model is able to recognise nouns in isolation and even learns to properly differentiate between plural and singular nouns. We also find that recognition is influenced by word competition from the word-initial cohort and neighbourhood density, mirroring word competition effects in human speech comprehension. Lastly, we find no evidence that vector quantisation is helpful in discovering and recognising words, though our gating experiment does show that the LSTM-VQ model is able to recognise the target words earlier.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visually Grounded Few-Shot Word Learning in Low-Resource Settings;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

2. Harmonic Detection From Noisy Speech With Auditory Frame Gain for Intelligibility Enhancement;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

3. What Do Self-Supervised Speech Models Know About Words?;Transactions of the Association for Computational Linguistics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3