A Novel Functional Link Network Stacking Ensemble with Fractal Features for Multichannel Fall Detection

Author:

Tahir AhsenORCID,Morison Gordon,Skelton Dawn A.,Gibson Ryan M.

Abstract

AbstractFalls are a major health concern and result in high morbidity and mortality rates in older adults with high costs to health services. Automatic fall classification and detection systems can provide early detection of falls and timely medical aid. This paper proposes a novel Random Vector Functional Link (RVFL) stacking ensemble classifier with fractal features for classification of falls. The fractal Hurst exponent is used as a representative of fractal dimensionality for capturing irregularity of accelerometer signals for falls and other activities of daily life. The generalised Hurst exponents along with wavelet transform coefficients are leveraged as input feature space for a novel stacking ensemble of RVFLs composed with an RVFL neural network meta-learner. Novel fast selection criteria are presented for base classifiers founded on the proposed diversity indicator, obtained from the overall performance values during the training phase. The proposed features and the stacking ensemble provide the highest classification accuracy of 95.71% compared with other machine learning techniques, such as Random Forest (RF), Artificial Neural Network (ANN) and Support Vector Machine. The proposed ensemble classifier is 2.3× faster than a single Decision Tree and achieves the highest speedup in training time of 317.7× and 198.56× compared with a highly optimised ANN and RF ensemble, respectively. The significant improvements in training times of the order of 100× and high accuracy demonstrate that the proposed RVFL ensemble is a prime candidate for real-time, embedded wearable device–based fall detection systems.

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of Stacking-Based Algorithms with Data Pruning on Qualcomm Snapdragon 820c;2023 IEEE International Conference on E-health Networking, Application & Services (Healthcom);2023-12-15

2. Random vector functional link network: Recent developments, applications, and future directions;Applied Soft Computing;2023-08

3. Contactless Human Activity Recognition using Deep Learning with Flexible and Scalable Software Define Radio;2023 International Wireless Communications and Mobile Computing (IWCMC);2023-06-19

4. Performance enhancement of vision based fall detection using ensemble of machine learning model;Cluster Computing;2022-11-30

5. IoT Based Fall Detection System for Elderly Healthcare;Internet of Things for Human-Centered Design;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3