Towards developing an organotypic model for the preclinical study and manipulation of human hair matrix-dermal papilla interactions

Author:

Platt Christopher I.ORCID,Chéret Jeremy,Paus Ralf

Abstract

AbstractOrgan culture of microdissected scalp hair follicles (HFs) has become the gold standard for human ex vivo hair research; however, availability is becoming very limited. Although various simplistic “HF-equivalent” in vitro models have been developed to overcome this limitation, they often fail to sufficiently mimic the complex cell–cell and cell–matrix interactions between epithelial and mesenchymal cell populations that underlie the specific growth processes occurring in a native HF. Here, we have attempted to overcome these limitations by developing a novel human hair research model that combines dermal papilla (DP) fibroblasts, cultured as 3-dimensional (3D) spheroids (DPS), with plucked anagen hair shafts (HS). We show that DPS express HF inductivity markers, such as alkaline phosphatase (ALP), versican and noggin, while plucked HSs retain substantial remnants of the anagen hair matrix. When cultured together, DPS adhere to and surround the plucked HS (HS-DPS), and significantly enhance HS expression of the differentiation marker keratin-85 (K85; p < 0.0001), while simultaneously decreasing the percentage of TUNEL + cells in the proximal HS (p = 0.0508). This simple model may offer a physiologically relevant first step toward evaluating HF differentiation in the human anagen hair matrix.

Funder

Manchester Biomedical Research Centre

Publisher

Springer Science and Business Media LLC

Subject

Dermatology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3