Platycodin D inhibits the proliferation and migration of hypertrophic scar-derived fibroblasts and promotes apoptosis through a caspase-dependent pathway

Author:

Yu Zhencheng,Li Yun,Fu Rao,Xue Yaxin,Zhao Danyang,Han Dong

Abstract

AbstractAbnormal fibroblast proliferation and excessive extracellular matrix (ECM) deposition lead to the formation of hypertrophic scars (HSs). However, there is no satisfactory method to inhibit the occurrence and development of HSs. In our study, platycodin D (PD), a natural compound extracted from Platycodon grandiflorus, inhibited HSs formation both in vitro and in vivo. First, qRT-PCR and Western blot were used to confirm PD dose-dependently downregulated the expression of Col I, Col III and α-SMA in human hypertrophic scar-derived fibroblasts (HSFs) (p < 0.05). Second, cck-8, transwell and wound healing assays verified PD suppressed the proliferation (p < 0.05) and migration of HSFs (p < 0.05), and inhibited the differentiation of HSFs into myofibroblasts. Moreover, PD-induced HSFs apoptosis were analyzed by flow cytometry and the apoptosis was activated through a caspase-dependent pathway. The rabbit ear scar model was used to further confirm the inhibitory effect of PD on collagen and α-SMA deposition. Finally, Western blot analysis showed that PD reduced TGF-β RI expression (p < 0.05) and affected matrix metalloproteinase 2 (MMP2) protein levels (p < 0.05). In conclusion, our study showed that PD inhibited the proliferation and migration of HSFs by inhibiting fibrosis-related molecules and promoting apoptosis via a caspase-dependent pathway. The TGF-β/Smad pathway also mediated the inhibition of HSFs proliferation and HSFs differentiation into myofibroblasts. Therefore, PD is a potential therapeutic agent for HSs and other fibrotic diseases.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Jiao-Cha Foundation of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Dermatology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3