A neural network-based algorithm for predicting the spontaneous passage of ureteral stones
Author:
Publisher
Springer Science and Business Media LLC
Subject
Urology
Link
http://link.springer.com/content/pdf/10.1007/s00240-019-01167-5.pdf
Reference14 articles.
1. Pearle MS, Lotan Y (2012) Urinary lithiasis: etiology, epidemiology, and pathogenesis. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA (eds) Campbell-walsh urology, 10th edn. Elsevier, Philadelphia, pp 1257–1286
2. Segura JW, Preminger GM, Assimos DG, Dretler SP, Kahn RI, Lingeman JE et al (1997) Ureteral stones clinical guidelines panel summary report on the management of ureteral calculi. J Urol 158:1915–1921 (The American Urological Association)
3. Aldaqadossi HA (2013) Stone expulsion rate of small distal ureteric calculi could be predicted with plasma C-reactive protein. Urolithiasis 41:235–239
4. Sfoungaristos S, Kavouras A, Katafigiotis I, Perimenis P (2012) Role of white blood cell and neutrophil counts in predicting spontaneous stone passage in patients with renal colic. BJU Int 110(8 Pt B):E339–E345
5. Ahmed AF, Gabr AH, Emara AA, Ali M, Abdel-Aziz AS, Alshahrani S (2015) Factors predicting the spontaneous passage of a ureteric calculus of < 10 mm. Arab J Urol 13:84–90
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Surgical Artificial Intelligence;Urologic Clinics of North America;2024-02
2. Two novel deep-learning models to predict spontaneous ureteral calculi passage: Model development and validation;Current Urology;2024-01-11
3. AI-powered real-time annotations during urologic surgery: The future of training and quality metrics;Urologic Oncology: Seminars and Original Investigations;2023-12
4. Transforming urinary stone disease management by artificial intelligence-based methods: A comprehensive review;Asian Journal of Urology;2023-07
5. Clinical Applications of Machine Learning for Urolithiasis and Benign Prostatic Hyperplasia: A Systematic Review;Journal of Endourology;2023-04-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3