A retrospective study using machine learning to develop predictive model to identify urinary infection stones in vivo

Author:

Wu Yukun,Mo Qishan,Xie Yun,Zhang Junlong,Jiang Shuangjian,Guan Jianfeng,Qu Canhui,Wu Rongpei,Mo Chengqiang

Abstract

AbstractPreoperative diagnosis of urinary infection stones is difficult, and accurate detection of stone composition can only be performed ex vivo. To provide guidance for better perioperative management and postoperative prevention of infection stones, we developed a machine learning model for preoperative identification of infection stones in vivo. The clinical data of patients with urolithiasis who underwent surgery in our hospital from January 2011 to December 2015 and January 2017 to December 2021 were retrospectively analyzed. A total of 2565 patients were included in the study, and 1168 eligible patients with urinary calculi were randomly divided into training set (70%) and test set (30%). Five machine learning algorithms (Support Vector Machine (SVM), Multilayer Perceptron (MLP), Decision Tree (DT), Random Forest Classifier (RFC), and Adaptive Boost (AdaBoost)) and 14 preoperative variables were used to construct the prediction model. The performance measure was the area under the receiver operating characteristic curve (AUC) of the validation set. The importance of 14 features in each prediction model for predicting infection stones was analyzed. A total of 89 patients (5.34%) with infection stones were included in the validation set. All the five prediction models showed strong discrimination in the validation set (AUC: 0.689–0.772). AdaBoost model was selected as the final model (AUC: 0.772(95% confidence interval, 0.657–0.887); Sensitivity: 0.522; Specificity: 0.902), UC positivity, and urine pH value were two important predictors of infection stones. We developed a predictive model through machine learning that can quickly identify infection stones in vivo with good predictive performance. It can be used for risk assessment and decision support of infection stones, optimize the disease management of urinary calculi and improve the prognosis of patients.

Publisher

Springer Science and Business Media LLC

Subject

Urology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3