Abstract
AbstractHuman pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) hold great promise for the repair of the injured heart, but optimal cell production in a fully chemically defined and cost-effective system is essential for the efficacy and safety of cell transplantation therapies. In this study, we provided a simple and efficient strategy for cardiac differentiation from hPSCs and performed functional evaluation in a rat model of myocardial infarction. Using a chemically defined medium including four components, recombinant human albumin, ascorbic acid, human transferrin, and RPMI 1640, we developed a manageable and cost-effective protocol for robust generation of CMs from hPSCs. Interestingly, the addition of transferrin helped hPSCs to transit from TeSR-E8 medium to the simple cardiac differentiation medium and successfully initiated mesoderm differentiation without significant cell death. The CM generation efficiency was up to 85% based on cTnT expression. We performed transcriptome profiling from differentiation day 0 to 35, and characterized interesting dynamic change of cardiac genes. CMs derived from transferrin-supplemented simple medium have similar transcriptome and the maturation level compared to those generated in B27 minus insulin medium as well as their in vivo counterparts. Importantly, after transplantation, hPSC-derived CMs survived in the infarcted rat heart, significantly improved the physiological function and reduced fibrosis. Our study offers an easy-to-use and cost-effective method for cardiac differentiation and facilitates the translational application of hPSC-derived CMs for heart repair.
Funder
Key Program of the National Key Research and Development Program of China
Key Program of National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,General Medicine,Physiology,Histology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献