Recognition of tor malware and onion services

Author:

Bergman JesperORCID,Popov Oliver B.ORCID

Abstract

AbstractThe transformation of the contemporary societies through digital technologies has had a profound effect on all human activities including those that are in the realm of illegal, unlawful, and criminal deeds. Moreover, the affordances provided by the anonymity creating techniques such as the Tor protocol which are beneficial for preserving civil liberties, appear to be highly profitable for various types of miscreants whose crimes range from human trafficking, arms trading, and child pornography to selling controlled substances and racketeering. The Tor similar technologies are the foundation of a vast, often mysterious, sometimes anecdotal, and occasionally dangerous space termed as the Dark Web. Using the features that make the Internet a uniquely generative knowledge agglomeration, with no borders, and permeating different jurisdictions, the Dark Web is a source of perpetual challenges for both national and international law enforcement agencies. The anonymity granted to the wrong people increases the complexity and the cost of identifying both the crimes and the criminals, which is often exacerbated with lack of proper human resources. Technologies such as machine learning and artificial intelligence come to the rescue through automation, intensive data harvesting, and analysis built into various types of web crawlers to explore and identify dark markets and the people behind them. It is essential for an effective and efficient crawling to have a pool of dark sites or onion URLs. The research study presents a way to build a crawling mechanism by extracting onion URLs from malicious executables by running them in a sandbox environment and then analysing the log file using machine learning algorithms. By discerning between the malware that uses the Tor network and the one that does not, we were able to classify the Tor using malware with an accuracy rate of 91% with a logistic regression algorithm. The initial results suggest that it is possible to use this machine learning approach to diagnose new malicious servers on the Tor network. Embedding this kind of mechanism into the crawler may also induce predictability, and thus efficiency in recognising dark market activities, and consequently, their closure.

Funder

Nordforsk

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Hardware and Architecture,Software,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3