Author:
Shukla Anant,Jureček Martin,Stamp Mark
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Cai, C., Li, L., Zeng, D.: Detecting social bots by jointly modeling deep behavior and content information. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1995–1998 (2017)
2. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: The paradigm-shift of social spambots: evidence, theories, and tools for the arms race. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 963–972 (2017)
3. Cresci, S., Di Pietro, R., Spognardi, A., Tesconi, M., Petrocchi, M.: Demystifying misconceptions in social bots research. arXiv:2303.17251 (2023)
4. David, I., Siordia, O.S., Moctezuma, D.: Features combination for the detection of malicious twitter accounts. In: 2016 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC, pp. 1–6 (2016)
5. Davis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F.: Botornot: A system to evaluate social bots. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 273–274 (2016)