Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Hardware and Architecture,Software,Computer Science (miscellaneous)
Reference52 articles.
1. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: N-gram-based detection of new malicious code. In: Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004., vol. 2, pp. 41–42. IEEE (2004)
2. Afonso, V.M., de Amorim, M.F., Grégio, A.R.A., Junquera, G.B., de Geus, P.: Identifying Android malware using dynamically obtained features. J. Comput. Virol. Hacking Tech. 11(1), 9–17 (2015)
3. Agarap, A.F.: Towards building an intelligent anti-malware system: a deep learning approach using support vector machine (svm) for malware classification. arXiv preprint arXiv:1801.00318 (2017)
4. Almin, S.B., Chatterjee, M.: A novel approach to detect android malware. Procedia Comput. Sci. 45, 407–417 (2015)
5. Aonzo, S., Georgiu, G.C., Verderame, L., Merlo, A.: Obfuscapk: an open-source black-box obfuscation tool for Android apps. SoftwareX 11, 100403 (2020)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献