Experimental and numerical studies of fragmentation shells filled with advanced HMX-plastic explosive compared to various explosive charges

Author:

Elshenawy TamerORCID,Zaky M. Gaber,Elbeih Ahmed

Abstract

AbstractThe wide usage of TNT as a main charge for fragmentation shells has been eliminated due to its lower performance and exudation on the fuze thread and relevant safety measures inconvenience. These disadvantages have not become accepted anymore due to the desired safety requirements and the limited efficiency of the TNT, especially when different new explosives are introduced into researches. This research studies the fragmentation calculations of the 120 mm high explosive shell when its is loaded with different explosives rather than TNT. Different explosives have been used in the current research include the melt cast compositions such as Octol and composition B, a cast cured composition based on RDX with HTPB polymer matrix and the plastic explosive composition HMX-silicone. The fingerprint of the fragmentation pattern of each shell loaded with different explosive has been obtained using Autodyn smooth particle hydrodynamic (SPH) algorithm, whose numerical model has been validated with previous measurements using TNT explosive. Based on obtained numerical estimates, the HMX-silicone explosive has been proposed to replace the traditional TNT explosive material. This explosive has been then manufactured and casted into the studied 120 mm shell, where the experimental field pit test was established to collect, separate and analyse the resultant fragments. Current calculations and experimental results showed that the shell loaded by composition HMX-silicone produced the highest fragmentation velocities (i.e. 1.5 times that of TNT) and the largest number of fragments (i.e. 2.7 times that of TNT) with lower masses, which will be recommended for our next production stages instead of the traditional TNT.

Funder

Military Technical College

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3