Large vessel occlusion detection by non-contrast CT using artificial ıntelligence

Author:

Aytaç EmrahORCID,Gönen MuratORCID,Tatli SinanORCID,Balgetir FerhatORCID,Dogan SengulORCID,Tuncer TurkerORCID

Abstract

Abstract Introduction Computer vision models have been used to diagnose some disorders using computer tomography (CT) and magnetic resonance (MR) images. In this work, our objective is to detect large and small brain vessel occlusion using a deep feature engineering model in acute of ischemic stroke. Methods We use our dataset. which contains 324 patient’s CT images with two classes; these classes are large and small brain vessel occlusion. We divided the collected image into horizontal and vertical patches. Then, pretrained AlexNet was utilized to extract deep features. Here, fc6 and fc7 (sixth and seventh fully connected layers) layers have been used to extract deep features from the created patches. The generated features from patches have been concatenated/merged to generate the final feature vector. In order to select the best combination from the generated final feature vector, an iterative selector (iterative neighborhood component analysis—INCA) has been used, and this selector has chosen 43 features. These 43 features have been used for classification. In the last phase, we used a kNN classifier with tenfold cross-validation. Results By using 43 features and a kNN classifier, our AlexNet-based deep feature engineering model surprisingly attained 100% classification accuracy. Conclusion The obtained perfect classification performance clearly demonstrated that our proposal could separate large and small brain vessel occlusion detection in non-contrast CT images. In this aspect, this model can assist neurology experts with the early recanalization chance.

Funder

Fırat University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3