Early reduction of retinal thickness predicts physical and cognitive disability in newly diagnosed multiple sclerosis patients: results from a cross-sectional study

Author:

Toscano Simona,Chisari Clara Grazia,Biondi Alice,Patti FrancescoORCID

Abstract

Abstract Introduction Retinal nerve fiber layer (RNFL) thickness is a promising biomarker of axonal loss and a potential outcome predictor in Multiple Sclerosis (MS). Cognitive impairment (CoI) exhibits a high prevalence in patients with MS (pwMS), even in the early phases of the disease. Our aim was to explore the role of RNFL thickness as a predictor of physical and cognitive disability in pwMS. Methods All newly diagnosed pwMS referred to the MS centre of the University-Hospital “Policlinico-San Marco” between 2015–2019 were evaluated at baseline and at 3 years. RNFL and ganglion cell layer (GCL) thickness for right (r.e.) and left eyes (l.e.) were measured with Optical Coherence Tomography (OCT). Disability level and cognitive profile were assessed, using the Expanded Disability Status Scale (EDSS) and the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) battery, respectively. Results We consecutively enrolled 487 pwMS, including 68 (14.0%) with primary progressive MS (PPMS). At baseline, RNFL and GCL were bilaterally thinner in PPMS (r.e. 90.4 ± 12.7; l.e. 90.2 ± 13.5, and r.e. 80.1 ± 11.2; l.e. 80.3 ± 12.6, respectively) compared to relapsing–remitting MS (RRMS) (r.e. 94.6 ± 13.1; l.e. 94.3 ± 14.8, and r.e. 85.1 ± 9.5; l.e. 84.9 ± 9.3, respectively) (p < 0.01). Both groups exhibited reduced RNFL and GCL thickness, worse cognitive performance and higher EDSS scores at 3-years follow-up compared with baseline. RNFL thickness ≤ 88.0 μm was an independent predictor of CoI (OR = 5.32; 95% CI = 1.84–9.12; p = 0.02) and disability worsening (OR = 3.18; 95% CI = 1.21–10.33; p = 0.05). Discussion RNFL thickness, as a biomarker of neurodegeneration, could be considered a predictive biomarker of cognitive degeneration and physical disability in MS.

Funder

Università degli Studi di Catania

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3