Abstract
Abstract
Objective
The connectivity between somatosensory evoked potentials (SEPs) and cortical plasticity remains elusive due to a lack of supporting data. This study investigates changes in pathological latencies and amplitudes of SEPs caused by an acute stroke after 2 weeks of rehabilitation with functional electrical stimulation (FES). Furthermore, changes in SEPs and the efficacy of FES against foot drop (FD) stroke symptoms were correlated using the 10-m walk test and foot–ankle strength.
Methods
A randomised controlled two-period crossover design plus a control group (group C) was designed. Group A (n = 16) was directly treated with FES, while group B (n = 16) was treated after 2 weeks. The untreated control group of 20 healthy adults underwent repeated SEP measurements for evaluation only.
Results
The repeated-measures ANOVA showed a decrease in tibial nerve (TN) P40 and N50 latencies in group A after the intervention, followed by a decline in non-paretic TN SEP in latency N50 (p < 0.05). Moreover, compared to groups B and C from baseline to 4 weeks, group A showed a decrease in paretic TN latency P40 and N50 (p < 0.05). An increase in FD strength and a reduction in step cadence in group B (p < 0.05) and a positive tendency in FD strength (p = 0.12) and step cadence (p = 0.08) in group A were observed after the treatment time. The data showed a moderate (r = 0.50–0.70) correlation between non-paretic TN latency N50 and step cadence in groups A and B after the intervention time.
Conclusion
The FES intervention modified the pathological gait in association with improved SEP afferent feedback.
Registered on 25 February 2021 on ClinicalTrials.gov under identifier number: NCT04767360.
Funder
Universitätsklinik München
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health,Neurology (clinical),Dermatology,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献