Abstract
AbstractDivisorial gonality and stable divisorial gonality are graph parameters, which have an origin in algebraic geometry. Divisorial gonality of a connected graph G can be defined with help of a chip firing game on G. The stable divisorial gonality of G is the minimum divisorial gonality over all subdivisions of edges of G. In this paper we prove that deciding whether a given connected graph has stable divisorial gonality at most a given integer k belongs to the class NP. Combined with the result that (stable) divisorial gonality is NP-hard by Gijswijt et al., we obtain that stable divisorial gonality is NP-complete. The proof consists of a partial certificate that can be verified by solving an Integer Linear Programming instance. As a corollary, we have that the total number of subdivisions needed for minimum stable divisorial gonality of a graph with m edges is bounded by mO(mn).
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献