On the Parameterized Complexity of the Expected Coverage Problem

Author:

Fomin Fedor V.,Ramamoorthi VijayaragunathanORCID

Abstract

AbstractThe Maximum Covering Location Problem (MCLP) is a well-studied problem in the field of operations research. Given a network with positive or negative demands on the nodes, a positive integer k, the MCLP seeks to find k potential facility centers in the network such that the neighborhood coverage is maximized. We study the variant of MCLP where edges of the network are subject to random failures due to some disruptive events. One of the popular models capturing the unreliable nature of the facility location is the linear reliability ordering (LRO) model. In this model, with every edge e of the network, we associate its survival probability 0 ≤ pe ≤ 1, or equivalently, its failure probability 1 − pe. The failure correlation in LRO is the following: If an edge e fails then every edge $e^{\prime }$ e with $p_{e^{\prime }} \leq p_{e}$ p e p e surely fails. The task is to identify the positions of k facilities that maximize the expected coverage. We refer to this problem as Expected Coverage problem. We study the Expected Coverage problem from the parameterized complexity perspective and obtain the following results. 1. For the parameter pathwidth, we show that the Expected Coverage problem is W[1]-hard. We find this result a bit surprising, because the variant of the problem with non-negative demands is fixed-parameter tractable (FPT) parameterized by the treewidth of the input graph. 2. We complement the lower bound by the proof that Expected Coverage is FPT being parameterized by the treewidth and the maximum vertex degree. We give an algorithm that solves the problem in time $ 2^{{\mathcal {O}}({\textbf {tw}} \log {\varDelta })} n^{{\mathcal {O}}(1)}$ 2 O ( tw log Δ ) n O ( 1 ) , where tw is the treewidth, Δ is the maximum vertex degree, and n the number of vertices of the input graph. In particular, since Δn, it means the problem is solvable in time $ n^{{\mathcal {O}}({\textbf {tw}})} $ n O ( tw ) , that is, is in XP parameterized by treewidth.

Funder

University of Bergen

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3