Expansivity and Periodicity in Algebraic Subshifts

Author:

Kari Jarkko

Abstract

AbstractA d-dimensional configuration $$c:\mathbb {Z}^d\longrightarrow A$$ c : Z d A is a coloring of the d-dimensional infinite grid by elements of a finite alphabet $$A\subseteq \mathbb {Z}$$ A Z . The configuration c has an annihilator if a non-trivial linear combination of finitely many translations of c is the zero configuration. Writing c as a d-variate formal power series, the annihilator is conveniently expressed as a d-variate Laurent polynomial f whose formal product with c is the zero power series. More generally, if the formal product is a strongly periodic configuration, we call the polynomial f a periodizer of c. A common annihilator (periodizer) of a set of configurations is called an annihilator (periodizer, respectively) of the set. In particular, we consider annihilators and periodizers of d-dimensional subshifts, that is, sets of configurations defined by disallowing some local patterns. We show that a $$(d-1)$$ ( d - 1 ) -dimensional linear subspace $$S\subseteq \mathbb {R}^d$$ S R d is expansive for a subshift if the subshift has a periodizer whose support contains exactly one element of S. As a subshift is known to be finite if all $$(d-1)$$ ( d - 1 ) -dimensional subspaces are expansive, we obtain a simple necessary condition on the periodizers that guarantees finiteness of a subshift or, equivalently, strong periodicity of a configuration. We provide examples in terms of tilings of $$\mathbb {Z}^d$$ Z d by translations of a single tile.

Funder

University of Turku (UTU) including Turku University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Forced Periodicity of Perfect Colorings;Theory of Computing Systems;2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3