Abstract
AbstractThe study of the complexity of the equation satisfiability problem in finite groups had been initiated by Goldmann and Russell in (Inf. Comput. 178(1), 253–262, 2002) where they showed that this problem is in for nilpotent groups while it is -complete for non-solvable groups. Since then, several results have appeared showing that the problem can be solved in polynomial time in certain solvable groups G having a nilpotent normal subgroup H with nilpotent factor G/H. This paper shows that such a normal subgroup must exist in each finite group with equation satisfiability solvable in polynomial time, unless the Exponential Time Hypothesis fails.
Funder
Deutsche Forschungsgemeinschaft
Narodowe Centrum Nauki
Universität Stuttgart
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献