On the Cycle Augmentation Problem: Hardness and Approximation Algorithms

Author:

Gálvez Waldo,Grandoni Fabrizio,Jabal Ameli AfrouzORCID,Sornat Krzysztof

Abstract

AbstractIn the k-Connectivity Augmentation Problem we are given a k-edge-connected graph and a set of additional edges called links. Our goal is to find a set of links of minimum size whose addition to the graph makes it (k + 1)-edge-connected. There is an approximation preserving reduction from the mentioned problem to the case k = 1 (a.k.a. the Tree Augmentation Problem or TAP) or k = 2 (a.k.a. the Cactus Augmentation Problem or CacAP). While several better-than-2 approximation algorithms are known for TAP, for CacAP only recently this barrier was breached (hence for k-Connectivity Augmentation in general). As a first step towards better approximation algorithms for CacAP, we consider the special case where the input cactus consists of a single cycle, the Cycle Augmentation Problem (CycAP). This apparently simple special case retains part of the hardness of the general case. In particular, we are able to show that it is APX-hard. In this paper we present a combinatorial $\left (\frac {3}{2}+\varepsilon \right )$ 3 2 + ε -approximation for CycAP, for any constant ε > 0. We also present an LP formulation with a matching integrality gap: this might be useful to address the general case of the problem.

Funder

SNSF

The National Science Centre Poland

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A (1.5+ε)-Approximation Algorithm for Weighted Connectivity Augmentation;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

2. Breaching the 2-Approximation Barrier for Connectivity Augmentation: A Reduction to Steiner Tree;SIAM Journal on Computing;2023-05-23

3. Approximation Algorithms for Vertex-Connectivity Augmentation on the Cycle;Approximation and Online Algorithms;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3