Constructing Antidictionaries of Long Texts in Output-Sensitive Space

Author:

Ayad Lorraine A.K.,Badkobeh Golnaz,Fici GabrieleORCID,Héliou Alice,Pissis Solon P.

Abstract

AbstractA word x that is absent from a word y is called minimal if all its proper factors occur in y. Given a collection of k words y1, … , yk over an alphabet Σ, we are asked to compute the set $\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$ M { y 1 , , y k } of minimal absent words of length at most of the collection {y1, … , yk}. The set $\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$ M { y 1 , , y k } contains all the words x such that x is absent from all the words of the collection while there exist i,j, such that the maximal proper suffix of x is a factor of yi and the maximal proper prefix of x is a factor of yj. In data compression, this corresponds to computing the antidictionary of k documents. In bioinformatics, it corresponds to computing words that are absent from a genome of k chromosomes. Indeed, the set $\mathrm {M}^{\ell }_{y}$ M y of minimal absent words of a word y is equal to $\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$ M { y 1 , , y k } for any decomposition of y into a collection of words y1, … , yk such that there is an overlap of length at least − 1 between any two consecutive words in the collection. This computation generally requires Ω(n) space for n = |y| using any of the plenty available $\mathcal {O}(n)$ O ( n ) -time algorithms. This is because an Ω(n)-sized text index is constructed over y which can be impractical for large n. We do the identical computation incrementally using output-sensitive space. This goal is reasonable when $\| \mathrm {M}^{\ell }_{\{y_1,\ldots ,y_N\}}\| =o(n)$ M { y 1 , , y N } = o ( n ) , for all N ∈ [1,k], where ∥S∥ denotes the sum of the lengths of words in set S. For instance, in the human genome, n ≈ 3 × 109 but $\| \mathrm {M}^{12}_{\{y_1,\ldots ,y_k\}}\| \approx 10^{6}$ M { y 1 , , y k } 12 1 0 6 . We consider a constant-sized alphabet for stating our results. We show that all$\mathrm {M}^{\ell }_{y_{1}},\ldots ,\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$ M y 1 , , M { y 1 , , y k } can be computed in $\mathcal {O}(kn+{\sum }^{k}_{N=1}\| \mathrm {M}^{\ell }_{\{y_1,\ldots ,y_N\}}\| )$ O ( k n + N = 1 k M { y 1 , , y N } ) total time using $\mathcal {O}(\textsc {MaxIn}+\textsc {MaxOut})$ O ( MaxIn + MaxOut ) space, where MaxIn is the length of the longest word in {y1, … , yk} and $\textsc {MaxOut}=\max \limits \{\| \mathrm {M}^{\ell }_{\{y_1,\ldots ,y_N\}}\| :N\in [1,k]\}$ MaxOut = max { M { y 1 , , y N } : N [ 1 , k ] } . Proof-of-concept experimental results are also provided confirming our theoretical findings and justifying our contribution.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3