Single Pixel Spectral Color Constancy

Author:

Koskinen Samu,Acar Erman,Kämäräinen Joni-Kristian

Abstract

AbstractColor constancy is still one of the biggest challenges in camera color processing. Convolutional neural networks have been able to improve the situation but there are still problems in many conditions, especially in scenes where a single color is dominating. In this work, we approach the problem from a slightly different setting. What if we could have some other information than the raw RGB image data. What kind of information would help to bring significant improvements while still be feasible in a mobile device. These questions sparked an idea for a novel approach for computational color constancy. Instead of raw RGB images used by the existing algorithms to estimate the scene white points, our approach is based on the scene’s average color spectra-single pixel spectral measurement. We show that as few as 10–14 spectral channels are sufficient. Notably, the sensor output has five orders of magnitude less data than in raw RGB images of a 10MPix camera. The spectral sensor captures the “spectral fingerprints” of different light sources and the illuminant white point can be accurately estimated by a standard regressor. The regressor can be trained with generated measurements using the existing RGB color constancy datasets. For this purpose, we propose a spectral data generation pipeline that can be used if the dataset camera model is known and thus its spectral characterization can be obtained. To verify the results with real data, we collected a real spectral dataset with a commercial spectrometer. On all datasets the proposed Single Pixel Spectral Color Constancy obtains the highest accuracy in the both single and cross-dataset experiments. The method is particularly effective for the difficult scenes for which the average improvements are 40–70% compared to state-of-the-arts. The approach can be extended to multi-illuminant case for which the experimental results also provide promising results.

Funder

Tampere University including Tampere University Hospital, Tampere University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nighttime color constancy using robust gray pixels;Journal of the Optical Society of America A;2024-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3