Domain Generalization with Small Data

Author:

Chen KechengORCID,Gal Elena,Yan Hong,Li Haoliang

Abstract

AbstractIn this work, we propose to tackle the problem of domain generalization in the context of insufficient samples. Instead of extracting latent feature embeddings based on deterministic models, we propose to learn a domain-invariant representation based on the probabilistic framework by mapping each data point into probabilistic embeddings. Specifically, we first extend empirical maximum mean discrepancy (MMD) to a novel probabilistic MMD that can measure the discrepancy between mixture distributions (i.e., source domains) consisting of a series of latent distributions rather than latent points. Moreover, instead of imposing the contrastive semantic alignment (CSA) loss based on pairs of latent points, a novel probabilistic CSA loss encourages positive probabilistic embedding pairs to be closer while pulling other negative ones apart. Benefiting from the learned representation captured by probabilistic models, our proposed method can marriage the measurement on the distribution over distributions (i.e., the global perspective alignment) and the distribution-based contrastive semantic alignment (i.e., the local perspective alignment). Extensive experimental results on three challenging medical datasets show the effectiveness of our proposed method in the context of insufficient data compared with state-of-the-art methods.

Funder

City University of Hong Kong

Publisher

Springer Science and Business Media LLC

Reference78 articles.

1. Balaji, Y., Chellappa, R., & Feizi, S. (2019). Normalized Wasserstein for mixture distributions with applications in adversarial learning and domain adaptation. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 6500–6508).

2. Balaji, Y., Sankaranarayanan, S., & Chellappa, R. (2018). Metareg: Towards domain generalization using meta-regularization. Advances in Neural Information Processing Systems, 31, 1–11.

3. Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of representations for domain adaptation. Advances in Neural Information Processing Systems, 19, 151–175.

4. Berlinet, A., & Thomas-Agnan, C. (2011). Reproducing kernel Hilbert spaces in probability and statistics. Springer.

5. Blanchard, G., Deshmukh, A. A., Dogan, Ü., Lee, G., & Scott, C. (2021). Domain generalization by marginal transfer learning. The Journal of Machine Learning Research, 22(1), 46–100.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3