HCLR-Net: Hybrid Contrastive Learning Regularization with Locally Randomized Perturbation for Underwater Image Enhancement

Author:

Zhou JingchunORCID,Sun Jiaming,Li Chongyi,Jiang Qiuping,Zhou Man,Lam Kin-Man,Zhang Weishi,Fu Xianping

Abstract

AbstractUnderwater image enhancement presents a significant challenge due to the complex and diverse underwater environments that result in severe degradation phenomena such as light absorption, scattering, and color distortion. More importantly, obtaining paired training data for these scenarios is a challenging task, which further hinders the generalization performance of enhancement models. To address these issues, we propose a novel approach, the Hybrid Contrastive Learning Regularization (HCLR-Net). Our method is built upon a distinctive hybrid contrastive learning regularization strategy that incorporates a unique methodology for constructing negative samples. This approach enables the network to develop a more robust sample distribution. Notably, we utilize non-paired data for both positive and negative samples, with negative samples are innovatively reconstructed using local patch perturbations. This strategy overcomes the constraints of relying solely on paired data, boosting the model’s potential for generalization. The HCLR-Net also incorporates an Adaptive Hybrid Attention module and a Detail Repair Branch for effective feature extraction and texture detail restoration, respectively. Comprehensive experiments demonstrate the superiority of our method, which shows substantial improvements over several state-of-the-art methods in terms of quantitative metrics, significantly enhances the visual quality of underwater images, establishing its innovative and practical applicability. Our code is available at: https://github.com/zhoujingchun03/HCLR-Net.

Funder

National Natural Science Foundation of China

Liaoning Provincial Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of China

Natural Science Foundation of Zhejiang

Natural Science Foundation of Ningbo

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3