Parallel Single-Pixel Imaging: A General Method for Direct–Global Separation and 3D Shape Reconstruction Under Strong Global Illumination

Author:

Jiang Hongzhi,Li YuxiORCID,Zhao Huijie,Li Xudong,Xu Yang

Abstract

AbstractWe present parallel single-pixel imaging (PSI), a photography technique that captures light transport coefficients and enables the separation of direct and global illumination, to achieve 3D shape reconstruction under strong global illumination. PSI is achieved by extending single-pixel imaging (SI) to modern digital cameras. Each pixel on an imaging sensor is considered an independent unit that can obtain an image using the SI technique. The obtained images characterize the light transport behavior between pixels on the projector and the camera. However, the required number of SI illumination patterns generally becomes unacceptably large in practical situations. We introduce local region extension (LRE) method to accelerate the data acquisition of PSI. LRE perceives that the visible region of each camera pixel accounts for a local region. Thus, the number of detected unknowns is determined by local region area, which is extremely beneficial in terms of data acquisition efficiency. PSI possesses several properties and advantages. For instance, PSI captures the complete light transport coefficients between the projector–camera pair, without making specific assumptions on measured objects and without requiring special hardware and restrictions on the arrangement of the projector–camera pair. The perfect reconstruction property of LRE can be proven mathematically. The acquisition and reconstruction stages are straightforward and easy to implement in the existing projector–camera systems. These properties and advantages make PSI a general and sound theoretical model to decompose direct and global illuminations and perform 3D shape reconstruction under global illumination.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3