Scaling Up Sign Spotting Through Sign Language Dictionaries

Author:

Varol GülORCID,Momeni Liliane,Albanie Samuel,Afouras Triantafyllos,Zisserman Andrew

Abstract

AbstractThe focus of this work issign spotting–given a video of an isolated sign, our task is to identifywhetherandwhereit has been signed in a continuous, co-articulated sign language video. To achieve this sign spotting task, we train a model using multiple types of available supervision by: (1)watchingexisting footage which is sparsely labelled using mouthing cues; (2)readingassociated subtitles (readily available translations of the signed content) which provide additionalweak-supervision; (3)looking upwords (for which no co-articulated labelled examples are available) in visual sign language dictionaries to enable novel sign spotting. These three tasks are integrated into a unified learning framework using the principles of Noise Contrastive Estimation and Multiple Instance Learning. We validate the effectiveness of our approach on low-shot sign spotting benchmarks. In addition, we contribute a machine-readable British Sign Language (BSL) dictionary dataset of isolated signs,BslDict, to facilitate study of this task. The dataset, models and code are available at our project page.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference68 articles.

1. Afouras, T., Chung, J.S., & Zisserman, A. (2018). LRS3-TED: a large-scale dataset for visual speech recognition. arXiv preprint arXiv:1809.00496

2. Agris, U., Zieren, J., Canzler, U., Bauer, B., & Kraiss, K. F. (2008). Recent developments in visual sign language recognition. Universal Access in the Information Society, 6, 323–362.

3. Albanie, S., Varol, G., Momeni, L., Afouras, T., Bull, H., Chowdhury, H., Fox, N., Woll, B., Cooper, R., McParland, A., & Zisserman, A. (2021). BOBSL: BBC-Oxford british sign language dataset. arXiv preprint arXiv:2111.03635, https://www.robots.ox.ac.uk/~vgg/data/bobsl

4. Albanie, S., Varol, G., Momeni, L., Afouras, T., Chung, J.S., Fox, N., & Zisserman, A. (2020). BSL-1K: Scaling up co-articulated sign language recognition using mouthing cues. In ECCV

5. Aldersson, R., & McEntee-Atalianis, L. (2007). A lexical comparison of Icelandic sign language and Danish sign language. Birkbeck Studies in Applied Linguistics,2.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-lingual few-shot sign language recognition;Pattern Recognition;2024-07

2. Using Artificial Intelligence for sign language translation: a systematic literature review;Salud, Ciencia y Tecnología - Serie de Conferencias;2023-10-08

3. Natural Language-Assisted Sign Language Recognition;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

4. Hierarchical I3D for Sign Spotting;Lecture Notes in Computer Science;2023

5. ECCV 2022 Sign Spotting Challenge: Dataset, Design and Results;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3