1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I. J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D. G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P. A., Vanhoucke, V., Vasudevan, V., Viégas, F. B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. In: OSDI.
2. Akata, Z., Perronnin, F., Harchaoui, Z., & Schmid, C. (2013) . Label-embedding for attribute-based classification. In: CVPR.
3. Akata, Z., Reed, S., Walter, D., Lee, H., & Schiele, B. (2015) . Evaluation of output embeddings for fine-grained image classification. In: CVPR.
4. Al-Halah, Z., & Stiefelhagen, R. (2015) . How to transfer? zero-shot object recognition via hierarchical transfer of semantic attributes. In: WACV.
5. Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Convex multi-task feature learning. Machine Learning, 73, 243–272.