Universal Representations: A Unified Look at Multiple Task and Domain Learning

Author:

Li Wei-HongORCID,Liu Xialei,Bilen Hakan

Abstract

AbstractWe propose a unified look at jointly learning multiple vision tasks and visual domains through universal representations, a single deep neural network. Learning multiple problems simultaneously involves minimizing a weighted sum of multiple loss functions with different magnitudes and characteristics and thus results in unbalanced state of one loss dominating the optimization and poor results compared to learning a separate model for each problem. To this end, we propose distilling knowledge of multiple task/domain-specific networks into a single deep neural network after aligning its representations with the task/domain-specific ones through small capacity adapters. We rigorously show that universal representations achieve state-of-the-art performances in learning of multiple dense prediction problems in NYU-v2 and Cityscapes, multiple image classification problems from diverse domains in Visual Decathlon Dataset and cross-domain few-shot learning in MetaDataset. Finally we also conduct multiple analysis through ablation and qualitative studies.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving Multiple Dense Prediction Performances by Exploiting Inter-Task Synergies for Neuromorphic Vision Sensors;IEEE Sensors Journal;2024-08-01

2. TFUT: Task fusion upward transformer model for multi-task learning on dense prediction;Computer Vision and Image Understanding;2024-07

3. Pattern-Expandable Image Copy Detection;International Journal of Computer Vision;2024-06-22

4. TSP-Transformer: Task-Specific Prompts Boosted Transformer for Holistic Scene Understanding;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

5. Self-training and multi-task learning for limited data: evaluation study on object detection;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3