1. Achlioptas, P., Diamanti, O., Mitliagkas, I., & Guibas, L. (2018). Learning representations and generative models for 3D point clouds. In International conference on machine learning (pp. 40–49).
2. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In International conference on machine learning (pp. 214–223).
3. Buades, A., Duran, J., & Navarro, J. (2019). Motion-compensated spatio-temporal filtering for multi-image and multimodal super-resolution. International Journal of Computer Vision, 127(10), 1474–1500.
4. Chang, A. X., Funkhouser, T., Guibas, L. J., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015). Shapenet: An information-rich 3D model repository. arXiv:1512.03012
5. Chen, X., Chen, B., & Mitra, N. J. (2020). Unpaired point cloud completion on real scans using adversarial training. In International conference on learning representations.