Systematic Evaluation of Uncertainty Calibration in Pretrained Object Detectors

Author:

Huseljic DenisORCID,Herde Marek,Hahn Paul,Müjde Mehmet,Sick Bernhard

Abstract

AbstractIn the field of deep learning based computer vision, the development of deep object detection has led to unique paradigms (e.g., two-stage or set-based) and architectures (e.g., Faster-RCNN or DETR) which enable outstanding performance on challenging benchmark datasets. Despite this, the trained object detectors typically do not reliably assess uncertainty regarding their own knowledge, and the quality of their probabilistic predictions is usually poor. As these are often used to make subsequent decisions, such inaccurate probabilistic predictions must be avoided. In this work, we investigate the uncertainty calibration properties of different pretrained object detection architectures in a multi-class setting. We propose a framework to ensure a fair, unbiased, and repeatable evaluation and conduct detailed analyses assessing the calibration under distributional changes (e.g., distributional shift and application to out-of-distribution data). Furthermore, by investigating the influence of different detector paradigms, post-processing steps, and suitable choices of metrics, we deliver novel insights into why poor detector calibration emerges. Based on these insights, we are able to improve the calibration of a detector by simply finetuning its last layer.

Funder

Universität Kassel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3