1. Akata, Z., Perronnin, F., Harchaoui, Z., & Schmid, C. (2013). Label-embedding for attribute-based classification. In IEEE conference on computer vision and pattern recognition (pp. 819–826).
2. Antoniou, A., Edwards, H., & Storkey, A. J. (2019). How to train your MAML. In Proceedings of the 7th international conference on learning representations.
3. Ba, L. J., Kiros, R., & Hinton, G. E. (2016). Layer normalization. CoRR arXiv:1607.06450.
4. Bertinetto, L., Henriques, J. F., Torr, P. H. S., & Vedaldi, A. (2019). Meta-learning with differentiable closed-form solvers. In Proceedings of the 7th international conference on learning representations.
5. Cao, K., Wei, C., Gaidon, A., Arechiga, N., & Ma, T. (2019). Learning imbalanced datasets with label-distribution-aware margin loss. Advances in Neural Information Processing Systems, 32, 1565–1576.