1. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In D. Precup, & Y. W. Teh (Eds.), Proceedings of the 34th international conference on machine learning, proceedings of machine learning research (Vol. 70, pp. 214–223). PMLR, International Convention Centre, Sydney, Australia.
2. Bińkowski, M., Sutherland, D. J., Arbel, M., & Gretton, A. (2018). Demystifying mmd gans. arXiv preprint arXiv:1801.01401.
3. Brock, A., Donahue, J., & Simonyan, K. (2019). Large scale GAN training for high fidelity natural image synthesis. In International conference on learning representations. https://openreview.net/forum?id=B1xsqj09Fm
4. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). Infogan: interpretable representation learning by information maximizing generative adversarial nets. In Advances in neural information processing systems (pp. 2172–2180).
5. Dowson, D. C., & Landau, B. V. (1982). The fréchet distance between multivariate normal distributions. Journal of Multivariate Analysis, 12(3), 450–455.