Virtual Restoration of Ancient Wooden Ships Through Non-rigid 3D Shape Assembly with Ruled-Surface FFD

Author:

Nemoto Takashi,Kobayashi Tetsuya,Kagesawa Masataka,Oishi TakeshiORCID,Kurokochi Hiromasa,Yoshimura Sakuji,Zidan Eissa,Taha Mamdouh

Abstract

AbstractIn recent years, 3D data has been widely used in archaeology and in the field of conservation and restoration of cultural properties. Virtual restoration, which reconstructs the original state in virtual space, is one of the promising applications utilizing 3D scanning data. Though many studies of virtual restoration have been conducted, it is still challenging to restore the cultural properties that consist of multiple deformable components because it is not feasible to identify the original shape uniquely. As a solution to such a problem, we proposed a non-rigid 3D shape assembly method for virtually restoring wooden ships that are composed of multiple timbers. The deformed timber can be well represented by ruled surface. We proposed a free-form deformation method with a ruled surface and an assembly method to align the deformable components mutually. The method employs a bottom-up approach that does not require reference data for target objects. The proposed framework narrows down the searching space for optimization using the physical constraints of wooden materials, and it can also obtain optimal solutions. We also showed an experimental result, where we virtually restored King Khufu’s first solar boat. The boat was originally constructed by assembling several timbers. The boat was reconstructed as a real object and is currently exhibited at a museum. However, unfortunately, the entire shape of the boat is slightly distorted. We applied the proposed method using archaeological knowledge and then showed the virtual restoration results using the acquired 3D data of the boat’s components.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RESEARCH PROGRESS IN THE SPLICING AND RESTORATION OF ARTIFACT FRAGMENTS BASED ON POINT CLOUD;ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-05

2. Batch-based Model Registration for Fast 3D Sherd Reconstruction;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3