Abstract
Abstract
The multi-dimensional assignment problem is universal for data association analysis such as data association-based visual multi-object tracking and multi-graph matching. In this paper, multi-dimensional assignment is formulated as a rank-1 tensor approximation problem. A dual L1-normalized context/hyper-context aware tensor power iteration optimization method is proposed. The method is applied to multi-object tracking and multi-graph matching. In the optimization method, tensor power iteration with the dual unit norm enables the capture of information across multiple sample sets. Interactions between sample associations are modeled as contexts or hyper-contexts which are combined with the global affinity into a unified optimization. The optimization is flexible for accommodating various types of contextual models. In multi-object tracking, the global affinity is defined according to the appearance similarity between objects detected in different frames. Interactions between objects are modeled as motion contexts which are encoded into the global association optimization. The tracking method integrates high order motion information and high order appearance variation. The multi-graph matching method carries out matching over graph vertices and structure matching over graph edges simultaneously. The matching consistency across multi-graphs is based on the high-order tensor optimization. Various types of vertex affinities and edge/hyper-edge affinities are flexibly integrated. Experiments on several public datasets, such as the MOT16 challenge benchmark, validate the effectiveness of the proposed methods.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献