Dual L1-Normalized Context Aware Tensor Power Iteration and Its Applications to Multi-object Tracking and Multi-graph Matching

Author:

Hu WeimingORCID,Shi Xinchu,Zhou Zongwei,Xing Junliang,Ling Haibin,Maybank Stephen

Abstract

Abstract The multi-dimensional assignment problem is universal for data association analysis such as data association-based visual multi-object tracking and multi-graph matching. In this paper, multi-dimensional assignment is formulated as a rank-1 tensor approximation problem. A dual L1-normalized context/hyper-context aware tensor power iteration optimization method is proposed. The method is applied to multi-object tracking and multi-graph matching. In the optimization method, tensor power iteration with the dual unit norm enables the capture of information across multiple sample sets. Interactions between sample associations are modeled as contexts or hyper-contexts which are combined with the global affinity into a unified optimization. The optimization is flexible for accommodating various types of contextual models. In multi-object tracking, the global affinity is defined according to the appearance similarity between objects detected in different frames. Interactions between objects are modeled as motion contexts which are encoded into the global association optimization. The tracking method integrates high order motion information and high order appearance variation. The multi-graph matching method carries out matching over graph vertices and structure matching over graph edges simultaneously. The matching consistency across multi-graphs is based on the high-order tensor optimization. Various types of vertex affinities and edge/hyper-edge affinities are flexibly integrated. Experiments on several public datasets, such as the MOT16 challenge benchmark, validate the effectiveness of the proposed methods.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learnable Graph Matching: A Practical Paradigm for Data Association;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-07

2. Video Instance Segmentation Using Graph Matching Transformer;2023 IEEE International Conference on Data Mining Workshops (ICDMW);2023-12-04

3. Towards Frame Rate Agnostic Multi-object Tracking;International Journal of Computer Vision;2023-11-20

4. Controllable Garment Image Synthesis Integrated with Frequency Domain Features;Computer Graphics Forum;2023-10

5. Separable-programming based probabilistic-iteration and restriction-resolving correlation filter for robust real-time visual tracking;Engineering Applications of Artificial Intelligence;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3