1. Abbas, M., Xiao, Q., Chen, L., Chen, P. Y., & Chen, T. (2022). Sharp-maml: Sharpness-aware model-agnostic meta learning. In International conference on machine learning, PMLR, pp. 10–32.
2. Bartler, A., Bühler, A., Wiewel, F., Döbler, M., & Yang, B. (2022). Mt3: Meta test-time training for self-supervised test-time adaption. In International conference on artificial intelligence and statistics, PMLR, pp. 3080–3090.
3. Bateni, P., Goyal, R., Masrani, V., Wood, F., & Sigal, L. (2020). Improved few-shot visual classification. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 14493–14502.
4. Bertinetto, L., Henriques, J. F., Torr, P. H., & Vedaldi, A. (2018). Meta-learning with differentiable closed-form solvers. arXiv preprint arXiv:1805.08136.
5. Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.