Joint Classification and Regression for Visual Tracking with Fully Convolutional Siamese Networks

Author:

Cui Ying,Guo DongyanORCID,Shao Yanyan,Wang Zhenhua,Shen Chunhua,Zhang Liyan,Chen Shengyong

Abstract

AbstractVisual tracking of generic objects is one of the fundamental but challenging problems in computer vision. Here, we propose a novel fully convolutional Siamese network to solve visual tracking by directly predicting the target bounding box in an end-to-end manner. We first reformulate the visual tracking task as two subproblems: a classification problem for pixel category prediction and a regression task for object status estimation at this pixel. With this decomposition, we design a simple yet effective Siamese architecture based classification and regression framework, termed SiamCAR, which consists of two subnetworks: a Siamese subnetwork for feature extraction and a classification-regression subnetwork for direct bounding box prediction. Since the proposed framework is both proposal- and anchor-free, SiamCAR can avoid the tedious hyper-parameter tuning of anchors, considerably simplifying the training. To demonstrate that a much simpler tracking framework can achieve superior tracking results, we conduct extensive experiments and comparisons with state-of-the-art trackers on a few challenging benchmarks. Without bells and whistles, SiamCAR achieves leading performance with a real-time speed. Furthermore, the ablation study validates that the proposed framework is effective with various backbone networks, and can benefit from deeper networks. Code is available at https://github.com/ohhhyeahhh/SiamCAR.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3