Multi-Object Tracking and Segmentation Via Neural Message Passing

Author:

Brasó Guillem,Cetintas OrcunORCID,Leal-Taixé Laura

Abstract

AbstractGraphs offer a natural way to formulate Multiple Object Tracking (MOT) and Multiple Object Tracking and Segmentation (MOTS) within the tracking-by-detection paradigm. However, they also introduce a major challenge for learning methods, as defining a model that can operate on such structured domain is not trivial. In this work, we exploit the classical network flow formulation of MOT to define a fully differentiable framework based on Message Passing Networks. By operating directly on the graph domain, our method can reason globally over an entire set of detections and exploit contextual features. It then jointly predicts both final solutions for the data association problem and segmentation masks for all objects in the scene while exploiting synergies between the two tasks. We achieve state-of-the-art results for both tracking and segmentation in several publicly available datasets. Our code is available at https://github.com/ocetintas/MPNTrackSeg

Funder

Sofja Kovalevskaja Award of the Humboldt Foundation and German Federal Ministry of Education and Research

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference106 articles.

1. Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network flows: Theory, algorithms and applications. Upper Saddle River, NJ, USA: Prentice Hall.

2. Baisa, N. L. (2021). Occlusion-robust online multiobject visual tracking using a GM-PHD filter with CNN-based re-identification. Journal of Visual Communication and Image Representation., 80, 103279.

3. Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., & Gulcehre C. (2018). Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 .

4. Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D., & Kavukcuoglu, K. (2016). Interaction networks for learning about objects, relations and physics. In Advances in neural information processing systems.

5. Berclaz, J., Fleuret, F., & Fua, P. (2006). Robust people tracking with global trajectory optimization. In IEEE conference on computer vision and pattern recognition.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rethinking Joint Detection and Embedding for Multiobject Tracking in Multiscenario;IEEE Transactions on Industrial Informatics;2024-06

2. Bacteria Tracking and Division Detection Using Graph Neural Networks;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

3. A framework for the analysis of historical newsreels;Humanities and Social Sciences Communications;2024-04-25

4. Integrated Heterogeneous Graph Attention Network for Incomplete Multi-modal Clustering;International Journal of Computer Vision;2024-04-24

5. Pixel-Level Segmentation for Multiobject Tracking Using Mask RCNN-FPN;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3