Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Reference49 articles.
1. Aghdam, H. H., Heravi, E. J., & Puig, D. (2015). A unified framework for coarse-to-fine recognition of traffic signs using Bayesian network and visual attributes. In: 10th international conference on computer vision theory and applications (VISAPP) (pp. 87–96). doi: 10.5220/0005303500870096
2. Baró, X., Escalera, S., Vitrià, J., Pujol, O., & Radeva, P. (2009). Traffic sign recognition using evolutionary adaboost detection and forest-ECOC classification. IEEE Transactions on Intelligent Transportation Systems, 10(1), 113–126. doi: 10.1109/TITS.2008.2011702 .
3. Ciresan, D., Meier, U., Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In 2012 IEEE conference on computer vision and pattern recognition (pp. 3642–3649). IEEE. doi: 10.1109/CVPR.2012.6248110 , arXiv:1202.2745v1
4. Coates, A., & Ng, A. Y. (2012). Learning feature representations with K-means. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7700 LECTU:561–580, doi: 10.1007/978-3-642-35289-8-30
5. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T. (2014). DeCAF: A deep convolutional activation feature for generic visual recognition. In: International conference on machine learning (pp. 647–655) arXiv:1310.1531 .
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献