A Benchmark and Evaluation of Non-Rigid Structure from Motion

Author:

Jensen Sebastian Hoppe Nesgaard,Doest Mads Emil Brix,Aanæs Henrik,Del Bue AlessioORCID

Abstract

AbstractNon-rigid structure from motion (nrsfm), is a long standing and central problem in computer vision and its solution is necessary for obtaining 3D information from multiple images when the scene is dynamic. A main issue regarding the further development of this important computer vision topic, is the lack of high quality data sets. We here address this issue by presenting a data set created for this purpose, which is made publicly available, and considerably larger than the previous state of the art. To validate the applicability of this data set, and provide an investigation into the state of the art of nrsfm, including potential directions forward, we here present a benchmark and a scrupulous evaluation using this data set. This benchmark evaluates 18 different methods with available code that reasonably spans the state of the art in sparse nrsfm. This new public data set and evaluation protocol will provide benchmark tools for further development in this challenging field.

Funder

Istituto Italiano di Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Bayesian-Based Improved Algorithm for Non-Rigid Structure Reconstruction;2023 China Automation Congress (CAC);2023-11-17

2. Multi-body Depth and Camera Pose Estimation from Multiple Views;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

3. Controllable GAN Synthesis Using Non-Rigid Structure-from-Motion;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

4. View Birdification in the Crowd: Ground-Plane Localization from Perceived Movements;International Journal of Computer Vision;2023-05-04

5. State of the Art in Dense Monocular Non‐Rigid 3D Reconstruction;Computer Graphics Forum;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3