Author:
Cosmo Luca,Minello Giorgia,Bronstein Michael,Rodolà Emanuele,Rossi Luca,Torsello Andrea
Abstract
AbstractThe Average Mixing Kernel Signature is a novel spectral signature for points on non-rigid three-dimensional shapes. It is based on a quantum exploration process of the shape surface, where the average transition probabilities between the points of the shape are summarised in the finite-time average mixing kernel. A band-filtered spectral analysis of this kernel then yields the AMKS. Crucially, we show that opting for a finite time-evolution allows the signature to account for a mixing of the Laplacian eigenspaces, similar to what is observed in the presence of noise, explaining the increased noise robustness of this signature when compared to alternative signatures. We perform an extensive experimental analysis of the AMKS under a wide range of problem scenarios, evaluating the performance of our descriptor under different sources of noise (vertex jitter and topological), shape representations (mesh and point clouds), as well as when only a partial view of the shape is available. Our experiments show that the AMKS consistently outperforms two of the most widely used spectral signatures, the Heat Kernel Signature and the Wave Kernel Signature, and suggest that the AMKS should be the signature of choice for various compute vision problems, including as input of deep convolutional architectures for shape analysis.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献