1. Ahmed, W., Morerio, P., & Murino, V. (2022). Cleaning noisy labels by negative ensemble learning for source-free unsupervised domain adaptation. In IEEE/CVF winter conference on applications of computer vision (pp 1616–1625). https://doi.org/10.1109/wacv51458.2022.00043
2. Arazo, E., Ortego, D., Albert, P., O’Connor, N. E., & McGuinness, K. (2020). Pseudo-labeling and confirmation bias in deep semi-supervised learning. In International joint conference on neural networks (pp. 1–8), IEEE. https://doi.org/10.1109/ijcnn48605.2020.9207304
3. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., & Gall, J. (2019). Semantickitti: A dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE/CVF international conference on computer vision (pp 9297–9307). https://doi.org/10.1109/iccv.2019.00939
4. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., & Raffel, C. A. (2019). Mixmatch: A holistic approach to semi-supervised learning. Advances in Neural Information Processing Systems 32
5. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., & Joulin, A. (2020). Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural Information Processing Systems, 33, 9912–9924.