A Deep Learning Approach to Clustering Visual Arts

Author:

Castellano Giovanna,Vessio GennaroORCID

Abstract

AbstractClustering artworks is difficult for several reasons. On the one hand, recognizing meaningful patterns based on domain knowledge and visual perception is extremely hard. On the other hand, applying traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, in this paper we propose : a DEep learning approach to cLustering vIsUal artS. The method uses a pre-trained convolutional network to extract features and then feeds these features into a deep embedded clustering model, where the task of mapping the input data to a latent space is jointly optimized with the task of finding a set of cluster centroids in this latent space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. can be useful for several tasks related to art analysis, in particular visual link retrieval and historical knowledge discovery in painting datasets.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference55 articles.

1. Arora, R. S., & Elgammal, A. (2012). Towards automated classification of fine-art painting style: A comparative study. In Proceedings of the 21st international conference on pattern recognition (ICPR 2012) (pp. 3541–3544).

2. Barnard, K., Duygulu, P., & Forsyth, D. (2001). Clustering art. In Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition (Vol. 2). CVPR 2001, IEEE.

3. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

4. Bhowmik, D., Gao, S., Young, M. T., & Ramanathan, A. (2018). Deep clustering of protein folding simulations. BMC Bioinformatics, 19(18), 47–58.

5. Cai, D., He, X., & Han, J. (2010). Locally consistent concept factorization for document clustering. IEEE Transactions on Knowledge and Data Engineering, 23(6), 902–913.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3