DeepFTSG: Multi-stream Asymmetric USE-Net Trellis Encoders with Shared Decoder Feature Fusion Architecture for Video Motion Segmentation

Author:

Rahmon GaniORCID,Palaniappan Kannappan,Toubal Imad Eddine,Bunyak Filiz,Rao Raghuveer,Seetharaman Guna

Abstract

AbstractDiscriminating salient moving objects against complex, cluttered backgrounds, with occlusions and challenging environmental conditions like weather and illumination, is essential for stateful scene perception in autonomous systems. We propose a novel deep architecture, named DeepFTSG, for robust moving object detection that incorporates single and multi-stream multi-channel USE-Net trellis asymmetric encoders extending U-Net with squeeze and excitation (SE) blocks and a single shared decoder network for fusing multiple motion and appearance cues. DeepFTSG is a deep learning based approach that builds upon our previous hand-engineered flux tensor split Gaussian (FTSG) change detection video analysis algorithm which won the CDNet CVPR Change Detection Workshop challenge competition. DeepFTSG generalizes much better than top-performing motion detection deep networks, such as the scene-dependent ensemble-based FgSegNet_v2, while using an order of magnitude fewer weights. Short-term motion and longer-term change cues are estimated using general-purpose unsupervised methods—flux tensor and multi-modal background subtraction, respectively. DeepFTSG was evaluated using the CDnet-2014 change detection challenge dataset, the largest change detection video sequence benchmark with 12.3 billion labeled pixels, and had an overall F-measure of 97%. We also evaluated the cross-dataset generalization capability of DeepFTSG trained solely on CDnet-2014 short video segments and then evaluated on unseen SBI-2015, LASIESTA and LaSOT benchmark videos. On the unseen SBI-2015 dataset, DeepFTSG had an F-measure accuracy of 87%, more than 30% higher compared to the top-performing deep network FgSegNet_v2 and outperforms the recently proposed KimHa method by 17%. On the unseen LASIESTA, DeepFTSG had an F-measure of 88% and outperformed the best recent deep learning method BSUV-Net2.0 by 3%. On the unseen LaSOT with axis-aligned bounding box ground-truth, network segmentation masks were converted to bounding boxes for evaluation, DeepFTSG had an F-Measure of 55%, outperforming KimHa method by 14% and FgSegNet_v2 by almost 1.5%. When a customized single DeepFTSG model is trained in a scene-dependent manner for comparison with state-of-the-art approaches, then DeepFTSG performs significantly better, reaching an F-Measure of 97% on SBI-2015 (+ 10%) and 99% on LASIESTA (+ 11%). The source code, pre-trained weights, and video demo for DeepFTSG are available at https://github.com/CIVA-Lab/DeepFTSG.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3